
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

33 | P a g e
www.ijacsa.thesai.org

An improved Approach for Document Retrieval

Using Suffix Trees

N. Sandhya

Associate Professor,

CSE Department,

GRIET,

 Hyderabad, Andhra Pradesh, 500 072, India

Y. Sri Lalitha

Associate Professor, CSE Department,

GRIET,

 Hyderabad, Andhra Pradesh, 500 072, India

Dr. A. Govardhan

Principal,

 JNTUH College of Engineering

Jagityal, Andhra Pradesh 500 501, India

Dr. K. Anuradha

Professor and Head,

CSE Department,

GRIET,

Hyderabad, Andhra Pradesh, 500 072, India

Abstract—Huge collection of documents is available at few mouse

clicks. The current World Wide Web is a web of pages. Users

have to guess possible keywords that might lead through search

engines to the pages that contain information of interest and

browse hundreds or even thousands of the returned pages in

order to obtain what they want. In our work we build a

generalized suffix tree for our documents and propose a search

technique for retrieving documents based on a sort of phrase

called word sequences. Our proposed method efficiently searches

for a given phrase (with missing or additional words in between)

with better performance.

Keywords-Document retrieval; Frequent Word Sequences; Suffix

tree; Traversal technique.

I. INTRODUCTION

With the growth of web, hundreds of millions of people
engage in information retrieval process every day when they
use web search engine or search their emails. IR is fast
becoming the dominant form of information access,
overtaking traditional database style searching. IR process
begins when user enters a query like search strings in web
search engines, phrases etc. to identify the related documents
or URLs.

Now almost all the documents have electronic copies.
With the development of WWW it is an efficient technique to
retrieve the documents using the web search engines based on
a query. But this should not be time consuming. That is the
reason precision of the retrieval of related documents for a
given query is vital for the search engine. Cluster based
information retrieval techniques also exist [11].

The next section deals with the Information Retrieval and
its related work on text documents. Section 3 describes Suffix
Tree. Section 4 deals with building generalized suffix tree.
Section 5 explains traversal technique Algorithm used for
quick retrieval of documents. Section 6 shows the experiment

setting, results and analysis. Section 7 concludes and discusses
future work.

I. RELATED WORK

Information Retrieval for a given query is retrieving
relevant documents efficiently. An application needs to be
developed that facilitates the user with an efficient retrieval of
the information that is needed. Search engines are the keys to
find specific information on the World Wide Web. Without
sophisticated search engines, it would be virtually impossible
to locate anything on the Web. A search engine is a program
that searches documents for specified keywords and returns a
list of the documents where the keywords are found based on
certain algorithms. Document clustering has initially been
investigated in Information Retrieval mainly as a means of
improving the performance of search engines by pre-clustering
the entire corpus [12].

The assumption (implicitly or explicitly) upon which most
commercial information retrieval systems are based is that if a
query and a document have a keyword in common, then the
document is about the query to some extent and if there are
more key words in common, then the document is about the
query. In this respect, an IR System represents the documents
and also query in separate vector space models as document -
terms matrix, where each column indicates terms in
documents and rows correspond to documents in IRS. This
representation is also called ―bag of words‖ mechanism. An
IR system matches the bag of keywords in the user’s query
with the bag of keywords representing the documents to
identify related documents and this approach suffers from a
number of problems.

 It does not handle lexical variation, i.e. different

words are used to represent the same meaning or

concept in queries and documents.

 It cannot deal with semantic variation, where a single

word has multiple meaning.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

34 | P a g e
www.ijacsa.thesai.org

 It does not handle properly syntactical variation, i.e.

words that co-occur in multiple documents are

probably related.

 Morphological variations i.e. words appearing in

different numbers (singular or plural) and in different

cases (Active, passive cases)

All the above problems hurt the retrieval system in terms
of precision and recall [8].

To overcome the bag of words problems, here we choose
to treat text documents as sequence of words and to retrieve
documents that share frequent word sequences from text
databases. The sequential relationship between the words and
documents is preserved using suffix tree data structure.

II. SUFFIX TREE

A suffix tree is a data structure that admits efficient string
matching and querying. Suffix trees have been studied and
used extensively, and have been applied to fundamental string
problems such as finding the longest repeated substring [6],
strings comparing [4], and text compression [5]. The suffix
trees became useful as the search time is independent of the
length of the string. The following description of the suffix
tree was taken from Dan Gus field’s book on Strings, Trees
and Sequences [7]. A suffix tree of a string is simply a
compact trie of all the suffixes of that string. Here we treat
documents as sequences of words, not characters. The main
purpose of using Suffix trees is that it is used to identify the
document IDs that contain the suffixes efficiently because the
leaf nodes of suffix tree stores documents IDs. Suffix trees are
useful in clustering [10].

A. Definition

A suffix tree T for an m-word string S is a rooted directed
tree with exactly m leaves numbered 1 to m. Each internal
node, other than the root, has at least two children and each
edge is labeled with a nonempty sub-string of words of S. The
label of a node is defined to be the concatenation of the edge-
labels on the path from the root to that node. No two edges
out of a node can have edge labels beginning with the same
word. For each suffix s of S, there exists a suffix node whose
label equals s.

The suffix trees are fast, incremental and are constructed in
linear time of the suffixes generated.

III. CONSTRUCTION OF SUFFIX TREES FOR DOCUMENTS

A text document D is viewed as a sequence of words, so
that it can be represented as D = (w1, w2, w3 . . .), where w1,
w2,w3, . . . are words appearing in D. Like a frequent itemset
in the association rule mining of a transaction data set [9], a
word set is frequent when at least the specified minimum
number (or percentage) of documents contains this word set.
A frequent word set containing k words is called frequent k-
word set.

A frequent k-word sequence is an FS with length k, such as
FS = (w1, w2. . . wk), and it has two frequent subsequences of
length k - 1, which are (w1, w2, . ., wk-1) and (w2,w3, . . ,wk).
[2].

In our work finding the frequent word sequences has two
steps: finding frequent 2-word sets first, then finding frequent
word sequences of all length by using the Generalized Suffix
Tree (GST) data structure.

A. Finding frequent 2-word sets

The goal of this step is to reduce the dimension of the
database (i.e. the number of unique words) by eliminating
those words that are not frequent enough to be in a frequent k-
word sequence, for k >= 2. This step is simple and straight
forward. We use an association rule miner to find the frequent
2-word sets that satisfy the minimum support. All the words in
frequent 2-word sets are put into a set. After finding the
frequent 2-word sets, we remove all the words in the
documents that are not in WS. After the removal, the resulting
documents are called compact documents. Let us consider an
example database

D = {d1, d2, d3}:

 d1: Almost all children eat chocolates.

 d2: Some of the children eat dry fruits.

 d3: Children like to eat dry fruits and chocolates.

There are 13 unique words in this database D: {all, and,

almost, children, chocolates, dry, eat, fruits, like, of, some, to,
the}. If we specify the minimum support as 60%, the
minimum support count is 2 for this case. The set of frequent
2-word sets is {{children, eat}, {children, chocolates},{eat,
chocolates}, {children, dry}, {children, fruits}, {dry,
fruits},{eat, fruits}, {eat, dry}, }; and WS = {children, eat,
chocolates, dry, fruits}. After removing those words not in
WS, the database D becomes D’={d1’, d2’, d3’} as follows,
where the removed words are shown in parentheses.

• d1’: (Almost all) children eat chocolates.

• d2’: (Some of the) children eat dry fruits.

• d3’: children (like to) eat dry fruits (and) chocolates.

Thus reducing the dimensions of documents, this has a

considerable impact in the next step i.e. building of a
generalized suffix tree. To find frequent word sequences of the
database, we adopted the suffix tree [6], a well known data
structure for sequence pattern matching, to find all the
frequent word sequences. Each compact document is treated
as a string of words and inserted into a generalized suffix tree
(GST) one by one. Finally, by collecting the information
stored in all the nodes of the GST, we can find all the frequent
word sequences of the database.

A suffix tree for a string S is actually a compressed trie for
the non-empty suffixes of S. A GST is a suffix tree that
combines the suffixes of a set of strings. In our case, we build
a GST of all the compact documents in the text database.

Each suffix node has a box attached, and it contains the

document id set of the suffix node. After building the GST, we
traverse it by depth-first. On the way down, the labels of the
edges are concatenated to become the string L of each node.
On the way up, each child node sends its document id set to its
parent. The support count of the label (i.e. string L) of this

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

35 | P a g e
www.ijacsa.thesai.org

parent node is the size of the union of all the document id sets
of its children. By checking the support count and the length
of the label of each node, we can get the information about all
the frequent word sequences in the database. In our example
shown above, we have seven nodes in the GST, and the details
are given in Table I.

Since the minimum support for frequent words is set to
60% in this example, the minimum support for frequent word
sequences could not be smaller than 60%. Only those words
whose support is at least 60% are kept in the compact
documents, so that we can find only the frequent word
sequences with that minimum support.

TABLE I: WORD SEQUENCES ASSOCIATED WITH THE NODES IN

FIGURE 1

Node

no
Word sequence

Length of word

sequence
Document Ids

1 chocolates 1 D1.txt D3.txt

2 dry fruits 2 D2.txt D3.txt

3 dry fruits chocolates 3 D3.txt

4 fruits 1 D2.txt D3.txt

5 fruits chocolates 2 D3.txt

6
children eat

2
D1.txt D2.txt

D3.txt

7 children eat chocolates 3 D1.txt

8 children eat dry fruits 4 D2.txt D3.txt

9
children eat dry fruits

chocolates
5

D3.txt

10
eat

1
D1.txt D2.txt

D3.txt

11 eat chocolates 2 D1.txt

12 eat dry fruits 3 D2.txt D3.txt

13
eat dry fruits chocolates

4
D3.txt

After building the suffix tree as mentioned above, we
traverse the tree for a given word sequence ― eat chocolates ‖,
which should retrieve all the documents that contain “children

eat chocolates”, “children eat dry fruits and chocolates” “
children of four years eat many chocolates”. To perform
this we propose SuffixTree algorithm for sequence of words.
Here we used level order traversal to find the word ―eat‖, after
getting to the node with word ―eat‖, perform depth first
search to get all the strings that start with node ―eat‖ applying
k-mismatch method to get the document ids of all the
documents in which the word sequence occurs.

IV. ALGORITHM

Step 1: Given word sequence to be searched is tokenized first.

Step 2: Initialize n to 1
 Search the nodes of root for first token

 If there is a match

 Perform step3

 Else

 If n is last node of root +1

 Return search failed

 Else

 Increment n and again search with next node of root

Step 3: Consider only the Level1 nth node sub tree

 Compare next token with Level2 first node

 do

 {

 If there is match

 (i) perform depth first search traversal on the tree

comparing with remaining tokens

 (ii) applying K-mismatch retrieve the documents

that contain the word sequence

 Else

 If all the Level1 nth node sub tree nodes are
 traversed word sequence is not present

 Else

 apply K-mismatch, perform DFS traversal and

compare with the next token

 }

While all the tokens of word sequence are not

 completed or entire Level1 nth node sub tree nodes

 are not traversed

V. EXPERIMENTAL SETUP

Suffixes of the phrases are generated [1, 10]. We treat the
documents as a sequence of words instead of bag of words.
Then the similarity measurements are done based on the
shared frequent word sequences among the documents. Each
document is reduced to a compact document by keeping only
the frequent words [1]. A generalized suffix tree for all the
compact documents is built. The frequent word sequences and
the documents sharing them are found. We proposed an
approach to improve the precision of retrieval. We used level
order traversal with depth first traversal of the GST to search
for the related documents based on word sequence.

A. Cleaning of documents and generating suffixes

Preprocessing of documents involves removal of all the
special symbols called nonword tokens (such as numbers,
HTML tags, and most punctuation) from each of the
documents, splitting the document contents line wise,
removing unwanted characters, removal of stop words and
stripping other text. Sentence boundaries are marked.
Identifying sentence boundaries is an important task as the
approach used here is word sequence based method for finding
suffixes.

B. Generating Suffixes and Building GST

The suffix of each line of the document is generated. After
finding all the suffixes of all the documents we extracted
unique suffixes and built compact suffix tree with these unique
suffixes. All Suffixes and Unique Suffixes for the given
example are shown in the Table II. We pruned the tree with
nodes that do not satisfy the user specified threshold, thus the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

36 | P a g e
www.ijacsa.thesai.org

tree contains only those nodes that are frequent word
sequences. A Generalized Suffix Tree (GST) for the given
example is shown in Fig 1. Then we apply our algorithm for
traversing the GST in order to retrieve documents when a
phrase with missing or additional words is given.

TABLE II. RESULTS

All suffixes Unique suffixes

children eat chocolates

children eat dry fruits

children eat dry fruits chocolates

chocolates

chocolates

dry fruits

dry fruits chocolates

eat chocolates

eat dry fruits

eat dry fruits chocolates

fruits

fruits chocolates

children eat chocolates

children eat dry fruits

children eat dry fruits chocolates

chocolates

dry fruits

dry fruits chocolates

eat chocolates

eat dry fruits

eat dry fruits chocolates

fruits

fruits chocolates

Figure 1. Generalized Suffix Tree:

VI. CONCLUSIONS

Our method is an efficient method over phrase based
retrieval. Phrase based retrieval requires the complete phrase
to appear in documents. We relaxed this condition and
matched related phrases using k-mismatch method. Here by
using k-mismatch the words sequence is maintained with some
additional words/missing words in between. Our method
proved efficient compared to simple phrase based retrieval in
two aspects: a) we pruned the infrequent terms thus reduced

the dimensions and b) proposed algorithm for efficient suffix
tree traversal. Our results have shown better performance than
simple phrase matching. Suffix trees can be constructed
incrementally. In our future work we would like to apply this
technique on Opinion Mining. Also we would like to extend
this technique for concept retrieval. We also would like to
investigate the application of this algorithm in cluster based
information retrieval with hierarchal, hybrid and incremental
clustering.

REFERENCES

[1] Yanjun Li, Soon M. Chung, John D. Holt Text document clustering based
on frequent word meaning sequences.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in:
Proceedings of the 20th VLDB Conference, 1994, pp.

[3] Horatiu Mocian Text Mining with suffix trees.

[4] A. Ehrenfeucht and D. Haussler. A new distance metric on strings

 computable in linear time. Discrete Applied Math, 1988.

[5] M. Rodeh, V. R. Pratt, and S. Even. Linear algorithm for data compression

 via string matching. In Journal of the ACM, pages 28(1):16–24, 1981.

[6] P. Weiner. Linear pattern matching algorithms. In The 14th Annual
Symposium on Foundations of Computer Science, pages 1–11, 1973.

[7] D. Gusfield. In Algorithms on strings, trees and sequences: computer

science and computational biology. Cambridge University Press, 1997.

[8] A.T. Arampatzis, T.Tsoris, C.H.A. Koster, Th.P. Vander Weide, RIAO 97
Proceeding, Phrase based information retrieval.

[9] Wikipedia. (2006). English on the Internet. http://www.wikipedia.org

Accessed on 1st December 2006.

[10] Oren Eli Zamir. Clustering Web Documents: A Phrase-Based Method for

 Grouping Search Engine Results

[11] Anastasios Tombros. The effectiveness of query-based hierarchic

 clustering of documents for information retrieval

[12] Jardine, N. and van Rijsbergen, C. J. The use of hierarchical clustering in

 information retrieval. Information Storage and Retrieval, 7:217-240,

 1971.

AUTHORS PROFILE

N.Sandhya B.Tech, M.Tech (Ph.D).

Working as an associate professor in the CSE Dept of GRIET. Has 11years of

experience in teaching. My areas of interest are Databases, Information

Retrieval, Data Mining and Text Mining.

Y.Srilalitha M.Tech (Ph.D).

Working as an associate professor in the CSE Dept of GRIET. Has 16 years of

experience in teaching. My areas of interest are Information Retrieval, Data

Mining and Text Mining.

 Dr.K.Anuradha M.Tech, Ph.D.

Working as a professor and Head of the CSE Dept in GRIET.

Has an experience of 25 years in teaching. My areas of interest are

Information Retrieval, Data Mining and Text Mining.

Dr.A.Govardhan M.Tech, Ph.D.

Working as a professor and Principal of JNTU, Jagityal. Has an experience of

20 years in teaching. My areas of interest are Information Retrieval, Databases,

Data Mining and Text Mining.

